Content | Course Code | Course Name | Semester | Theory | Practice | Lab | Credit | ECTS | |-------------|------------------------|----------|--------|----------|-----|--------|------| | ING251 | Advanced Mathematics I | 3 | 2 | 1 | 0 | 2,5 | 4 | | Prerequisites | | |------------------------|--| | Admission Requirements | | | Language of Instruction | French | | | | |-------------------------|--|--|--|--| | Course Type | Compulsory | | | | | Course Level | Bachelor Degree | | | | | Objective | This course is the continuation of the Math I course. In this context, the objectives of this course are: | | | | | | - Demonstrate to the students the classical techniques [integration by parts and change of variables] to calculate a primitive, | | | | | | - Teach students to handle the comparison relations "to be negligible in front of" and "to be equivalent to" on functions, | | | | | | Teach how to find a "" simple "" equivalent of a point function to find its limit, Demonstrate the different convergence criteria for the integrals of positive functions, Explain in which cases a limited expansion makes it possible to determine the nature of an integral, Demonstrate the different convergence criteria for series with positive terms, Explain in which cases a limited development makes it possible to determine the nature of a series | | | | | Content | Primitives: Definition, properties and first examples. Primitives: Calculation rules [integration by parts and change of variable] Comparison relations: function negligible in front of another, function equivalent to another Comparison relations: calculation rules, comparative growth of logarithms, powers and exponential in 0 and infinity. Comparison relations: Application to the search for limits. Generalized integrals: definition, properties and first examples [Riemann integrals and Bertrand integrals]. Generalized integrals: comparison theorems for positive functions. Generalized integrals: case of functions of any sign. Partial Examination / Ara sinav Generalized integrals: Integrals depending on a parameter Numerical series: definition, properties and first examples [Riemann series and Bertrand series]. Numerical series: comparison theorems for series with positive terms. | | | | | | 13. Numerical series: Case of series of any sign. Convergence criterion of alternating series.14. Digital Series: Series depending on a parameter | | | | | References | Lectures notes ans worksheets http://braise.univ-rennes1.fr/braise.cgi http://www.unisciel.fr | | | | ## **Theory Topics** | Week | Weekly Contents | |------|-----------------| | | , |