Introduction to the Internet of Things(INF402)
Course Code | Course Name | Semester | Theory | Practice | Lab | Credit | ECTS |
---|---|---|---|---|---|---|---|
INF402 | Introduction to the Internet of Things | 7 | 2 | 0 | 2 | 3 | 3 |
Prerequisites | |
Admission Requirements |
Language of Instruction | French |
Course Type | Compulsory |
Course Level | Bachelor Degree |
Course Instructor(s) | Özgün PINARER opinarer@gsu.edu.tr (Email) |
Assistant | |
Objective |
1. Managing and analyzing data produced by IoT systems 2. architecture of embedded processors and how to design and build them 3. design and optimization of wireless communication systems using machine learning techniques 4. modern cryptography applications 5. signal processing and computer vision |
Content |
Fundamentals of Embedded IoT Systems Embedded Computing Methods IoT Networks Research Methods and Project Preparation IoT Device Management Secure Hardware and Embedded Devices Embedded Processors Sensor Fusion Technique IoT Applications in Industry Sensor Based Health Applications Smart Agriculture Applications Applied Internet of Things - Internet of Vehicles and Applications Embedded Machine Learning Algorithms |
Course Learning Outcomes |
The student who successfully completes this course will have the following skills; 1. Main elements of Internet of Things (IoT) systems and how to design and build them 2. embedded programming and IoT hardware components such as microprocessors, microsensors, and energy harvesters 3. how does data move between devices, applications and the cloud? 4. IoT system vulnerabilities and how to protect IoT devices and networks from malicious attacks |
Teaching and Learning Methods |
Verbal lecture Student presentations Reporting Term project |
References |
Theory Topics
Week | Weekly Contents |
---|---|
1 | Fundamentals of Embedded IoT Systems |
2 | Embedded Computing Methods |
3 | IoT Networks |
4 | Research Methods and Project Preparation |
5 | IoT Device Management |
6 | Secure Hardware and Embedded Devices |
7 | Embedded Processors |
8 | Midterm |
9 | Sensor Fusion Technique |
10 | IoT Applications in Industry |
11 | Sensor Based Health Applications |
12 | Smart Agriculture Applications |
13 | Applied Internet of Things - Internet of Vehicles and Applications |
14 | Embedded Machine Learning Algorithms |
Practice Topics
Week | Weekly Contents |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 |
Contribution to Overall Grade
Number | Contribution | |
---|---|---|
Contribution of in-term studies to overall grade | 1 | 60 |
Contribution of final exam to overall grade | 1 | 40 |
Toplam | 2 | 100 |
In-Term Studies
Number | Contribution | |
---|---|---|
Assignments | 0 | 0 |
Presentation | 0 | 0 |
Midterm Examinations (including preparation) | 1 | 30 |
Project | 0 | 0 |
Laboratory | 0 | 0 |
Other Applications | 0 | 0 |
Quiz | 0 | 0 |
Term Paper/ Project | 1 | 30 |
Portfolio Study | 0 | 0 |
Reports | 0 | 0 |
Learning Diary | 0 | 0 |
Thesis/ Project | 0 | 0 |
Seminar | 0 | 0 |
Other | 0 | 0 |
Toplam | 2 | 60 |
No | Program Learning Outcomes | Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fizik ve mühendislik bilimlerine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, mühendislik problemlerinin modellenmesi ve çözümünde kullanabilme becerisi. | |||||
2 | Karmaşık bilgisayar mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. | |||||
3 | Yazılımsal veya donanımsal karmaşık bir sistemi, süreci veya donanımı gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. | X | ||||
4 | Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. | X | ||||
5 | Analitik düşünce ile bir sistemi, sistem bileşenini ya da süreci analiz etme, modelleme, deney tasarlama ve yapma, veri toplama, çözüm algoritmaları üretebilme, uygulamaya alma ve geliştirme becerileri. | X | ||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. | X | ||||
7 | Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az iki yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, yazılım ve donanım tasarımını, gerekirse teknik resim metotları kullanarak raporlayabilme, etkin sunum yapabilme becerisi. | X | ||||
8 | Bilgiye erişebilme ve bu amaçla kaynak araştırması yapabilme, veri tabanları ve diğer bilgi kaynaklarını kullanabilme becerisi | X | ||||
9 | Yaşam boyu öğrenmenin gerekliliği bilinci; kendini sürekli yenileme becerisi. | X | ||||
10 | Mesleki etik ilkelerine uygun davranma, mesleki sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi. | X | ||||
11 | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. | X | ||||
12 | Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi. | X | ||||
13 | Bilgisayar mühendisliği uygulamalarının hukuki ve etik boyutları konusunda farkındalık. | X |
Activities | Number | Period | Total Workload |
---|---|---|---|
Total Workload | 0 | ||
Total Workload / 25 | 0.00 | ||
Credits ECTS | 0 |