Advanced Mathematics I(ING251)
Course Code | Course Name | Semester | Theory | Practice | Lab | Credit | ECTS |
---|---|---|---|---|---|---|---|
ING251 | Advanced Mathematics I | 3 | 2 | 1 | 0 | 2.5 | 4 |
Prerequisites | |
Admission Requirements |
Language of Instruction | French |
Course Type | Compulsory |
Course Level | Bachelor Degree |
Course Instructor(s) | Marie Christine PEROUEME mcperoueme@voila.fr (Email) |
Assistant | |
Objective |
This course is the continuation of the Math I course. In this context, the objectives of this course are: - Demonstrate to the students the classical techniques [integration by parts and change of variables] to calculate a primitive, - Teach students to handle the comparison relations "to be negligible in front of" and "to be equivalent to" on functions, - Teach how to find a "" simple "" equivalent of a point function to find its limit, - Demonstrate the different convergence criteria for the integrals of positive functions, - Explain in which cases a limited expansion makes it possible to determine the nature of an integral, - Demonstrate the different convergence criteria for series with positive terms, - Explain in which cases a limited development makes it possible to determine the nature of a series |
Content |
1. Primitives: Definition, properties and first examples. 2. Primitives: Calculation rules [integration by parts and change of variable] 3. Comparison relations: function negligible in front of another, function equivalent to another 4. Comparison relations: calculation rules, comparative growth of logarithms, powers and exponential in 0 and infinity. 5. Comparison relations: Application to the search for limits. 6. Generalized integrals: definition, properties and first examples [Riemann integrals and Bertrand integrals]. 7. Generalized integrals: comparison theorems for positive functions. 8. Generalized integrals: case of functions of any sign. 9. Partial Examination / Ara sinav 10. Generalized integrals: Integrals depending on a parameter 11. Numerical series: definition, properties and first examples [Riemann series and Bertrand series]. 12. Numerical series: comparison theorems for series with positive terms. 13. Numerical series: Case of series of any sign. Convergence criterion of alternating series. 14. Digital Series: Series depending on a parameter |
Course Learning Outcomes |
The student who will take this course will develop the following skill elements and will be able to: 1. Make an integration by parts and / or a change of variable to calculate the integral of a function, 2. Compare two functions at a given point, 3. Determine a "simple" equivalent of a function to calculate its limit at a point, 4. Apply comparison theorems to determine if a positive function admits a generalized integral, 5. Know how to use a Taylor expansion to determine the nature of an integral [absolutely convergent, semi-convergent or divergent], 6. Apply comparison theorems to determine if a series with positive terms is convergent, 7. Know how to use a lTaylor expansion to determine the nature of a series [absolutely convergent, semi-convergent or divergent] |
Teaching and Learning Methods | Lectures and supervised works/tutorials |
References |
1. Lectures notes ans worksheets 2. http://braise.univ-rennes1.fr/braise.cgi 3. http://www.unisciel.fr |
Theory Topics
Week | Weekly Contents |
---|---|
1 | Reminders: Derivation, usual functions and limited developments |
2 | Primitives: Definition, Interpretation and Properties |
3 | Primitives: Calculation methods (integration by part) |
4 | Primitives: Calculation methods (integration by part) |
5 | Primitives: Calculation methods (cases requiring several successive methods) |
6 | Comparison of functions: Definition and interpretation |
7 | Comparing functions: Practical search for the equivalent of a function |
8 | Comparing functions: Practical search for the equivalent of a function (continued) |
9 | Midterm exam |
10 | Generalized integrals: Definition, Interpretation and Properties |
11 | Generalized integrals: Case of positive functions |
12 | Generalized integrals: Case of functions of any sign |
13 | Generalized integrals: Semi-convergent integrals |
14 | Preparing for the final exam |
Practice Topics
Week | Weekly Contents |
---|
Contribution to Overall Grade
Number | Contribution | |
---|---|---|
Contribution of in-term studies to overall grade | 0 | 0 |
Contribution of final exam to overall grade | 0 | 0 |
Toplam | 0 | 0 |
In-Term Studies
Number | Contribution | |
---|---|---|
Assignments | 0 | 0 |
Presentation | 0 | 0 |
Midterm Examinations (including preparation) | 0 | 0 |
Project | 0 | 0 |
Laboratory | 0 | 0 |
Other Applications | 0 | 0 |
Quiz | 0 | 0 |
Term Paper/ Project | 0 | 0 |
Portfolio Study | 0 | 0 |
Reports | 0 | 0 |
Learning Diary | 0 | 0 |
Thesis/ Project | 0 | 0 |
Seminar | 0 | 0 |
Other | 0 | 0 |
Toplam | 0 | 0 |
No | Program Learning Outcomes | Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fizik ve mühendislik bilimlerine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, mühendislik problemlerinin modellenmesi ve çözümünde kullanabilme becerisi. | X | ||||
2 | Karmaşık bilgisayar mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. | X | ||||
3 | Yazılımsal veya donanımsal karmaşık bir sistemi, süreci veya donanımı gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. | X | ||||
4 | Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. | X | ||||
5 | Analitik düşünce ile bir sistemi, sistem bileşenini ya da süreci analiz etme, modelleme, deney tasarlama ve yapma, veri toplama, çözüm algoritmaları üretebilme, uygulamaya alma ve geliştirme becerileri. | X | ||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. | X | ||||
7 | Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az iki yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, yazılım ve donanım tasarımını, gerekirse teknik resim metotları kullanarak raporlayabilme, etkin sunum yapabilme becerisi. | X | ||||
8 | Bilgiye erişebilme ve bu amaçla kaynak araştırması yapabilme, veri tabanları ve diğer bilgi kaynaklarını kullanabilme becerisi | X | ||||
9 | Yaşam boyu öğrenmenin gerekliliği bilinci; kendini sürekli yenileme becerisi. | |||||
10 | Mesleki etik ilkelerine uygun davranma, mesleki sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi. | |||||
11 | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. | |||||
12 | Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi. | |||||
13 | Bilgisayar mühendisliği uygulamalarının hukuki ve etik boyutları konusunda farkındalık. |
Activities | Number | Period | Total Workload |
---|---|---|---|
Total Workload | 0 | ||
Total Workload / 25 | 0.00 | ||
Credits ECTS | 0 |