Computer Engineering Department

Digital Signal Processing(INF345)

Course Code Course Name Semester Theory Practice Lab Credit ECTS
INF345 Digital Signal Processing 6 3 0 0 3 4
Prerequisites INF316
Admission Requirements INF316
Language of Instruction French
Course Type Elective
Course Level Bachelor Degree
Course Instructor(s) MOULOUD ADEL (Email)
Assistant BATUHAN YILMAZ (Email)
Objective The objective of this course is to give basic information of signal processing. The aim is to present theoretical results on this subject and practical applications.
Content w1 Digital processing, motivation and needs. The digital signal processing systems, characteristics and advantages
w2 Signals and Systems I: discrete time and continuous-time signals. Transformation of the argument. Exponential and sinusoidal signals. The unit impulse and unit step functions.
w3 Signals and Systems II: continuous time and properties of discrete-time system. Memory Systems, causality, stability, linearity and time invariance
w4 The linear time invariant (LTI) systems: convolution sum and integral. Unit impulse response and convolution sum expression LTI systems. LTI system properties.
w5 Term (periodic) signals to the expression in Fourier series. discrete time and continuous-time convergence of Fourier series and the properties of expressions
w6 sign with non-periodic expression of Fourier series. discrete time and continuous-time convergence of Fourier series with properties and expressions
w7 Fourier transform amplitude-phase expression. filter design, ideal and non-ideal at the time and frequency characteristics of filters
w8 The mid-term
w9 Sampling: The sampling of analog signals. sampling theorem, the sampling pulse train
w10 The Laplace transform: convergence zone, transformation properties. systems using the Laplace transform analysis LTI
w11 convergence zone: Z-transform. transformation properties. LTI systems using the Z transform analysis
w12 Digital signal processing, software and applications, programming languages, development environments and the introduction of software
w13 practical applications of the concepts I: Examples of digital signal processing and its applications
w14 practical concepts applications II: Examples of digital signal processing and its applications
Course Learning Outcomes 1. Understand and be able to classify the nature of the types of signals encountered in engineering applications.
2. Distinguish the processes of discrete and continuous signal processing.
3. LTI (Linear Time Invariant) systems to understand the properties.
4. Understand the theoretical and practical applications of the sampling process.
5. Being able to transform time-frequency and apply them.
Teaching and Learning Methods oral presentation with slides
student presentations
computer analysis
quiz
term project
References Francis Cottet, “TRAITEMENT DES SIGNAUX ET ACQUISITION DE DONNÉES” Dunod. Paris 2009
Vinay K. Ingle and John G. Proakis, “Digital Signal Processing Using MATLAB”, Cengage Learning, 2007
Print the course contents
Theory Topics
Week Weekly Contents
Practice Topics
Week Weekly Contents
Contribution to Overall Grade
  Number Contribution
Toplam 0 0
In-Term Studies
  Number Contribution
Toplam 0 0
No Program Learning Outcomes Contribution
1 2 3 4 5
1 Matematik, fizik ve mühendislik bilimlerine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, mühendislik problemlerinin modellenmesi ve çözümünde kullanabilme becerisi. X
2 Karmaşık bilgisayar mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. X
3 Yazılımsal veya donanımsal karmaşık bir sistemi, süreci veya donanımı gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. X
4 Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. X
5 Analitik düşünce ile bir sistemi, sistem bileşenini ya da süreci analiz etme, modelleme, deney tasarlama ve yapma, veri toplama, çözüm algoritmaları üretebilme, uygulamaya alma ve geliştirme becerileri. X
6 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. X
7 Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az iki yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, yazılım ve donanım tasarımını, gerekirse teknik resim metotları kullanarak raporlayabilme, etkin sunum yapabilme becerisi. X
8 Bilgiye erişebilme ve bu amaçla kaynak araştırması yapabilme, veri tabanları ve diğer bilgi kaynaklarını kullanabilme becerisi X
9 Yaşam boyu öğrenmenin gerekliliği bilinci; kendini sürekli yenileme becerisi. X
10 Mesleki etik ilkelerine uygun davranma, mesleki sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.
11 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. X
Activities Number Period Total Workload
Total Workload 0
Total Workload / 25 0.00
Credits ECTS 0
Scroll to Top