Master of Science in Computer Engineering

Data Warehouses and Data Mining(INF 511)

Course Code Course Name Semester Theory Practice Lab Credit ECTS
INF 511 Data Warehouses and Data Mining 1 3 0 0 3 6
Prerequisites
Admission Requirements
Language of Instruction English
Course Type Elective
Course Level Masters Degree
Course Instructor(s) Gülfem ALPTEKİN gulfem@gmail.com (Email)
Assistant
Objective This class aims at introducing the data mining process to students. This includes the description of data preparation and preprocessing, of various data mining algorithms and of the tools available to assess their results. The class focuses on standard approaches regarding association rules mining, supervised classification and unsupervised classification (clustering). Basic statistical knowledge is necessary to understand the mining algorithms and the quality assessment tools.
Content - data pre-processing
- supervised classification
- clustering
- complex data mining
- results validation and quality assessment
Course Learning Outcomes 1. Data preparation
2. Theoretical and practical knowledge of standard data mining algorithms
3. Standard assessment tools
Teaching and Learning Methods theoretical & practical class
assignments
References • Data Mining - Practical Machine Learning Tools, 2nd edition, Ian H. Witten & Eibe Frank, Morgan Kaufmann, 2005.
• Neural Networks - A Comprehensive Foundation, 2nd edition, Simon Haykin, Pearson/Prentice Hall,1999.
• Data Mining: Concepts and Techniques, Jiawei Han & Micheline Kamber, Morgan Kaufmann, 2000.
• Applied Statistics and Probabilities for Engineers, 4th edition, D.C. Montgomery & G.C. Runger, John Willey & sons, 2006.
• The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, T. Hastie, R. Tibshirani & J. Friedman, Springer, 2009.
Print the course contents
Theory Topics
Week Weekly Contents
Practice Topics
Week Weekly Contents
Contribution to Overall Grade
  Number Contribution
Contribution of in-term studies to overall grade 2 50
Contribution of final exam to overall grade 1 50
Toplam 3 100
In-Term Studies
  Number Contribution
Assignments 0 0
Presentation 0 0
Midterm Examinations (including preparation) 1 25
Project 1 25
Laboratory 0 0
Other Applications 0 0
Quiz 0 0
Term Paper/ Project 0 0
Portfolio Study 0 0
Reports 0 0
Learning Diary 0 0
Thesis/ Project 0 0
Seminar 0 0
Other 0 0
Toplam 2 50
No Program Learning Outcomes Contribution
1 2 3 4 5
1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 X
13 X
Activities Number Period Total Workload
Class Hours 12 3 36
Midterm Examinations (including preparation) 1 3 3
Project 1 3 3
Total Workload 42
Total Workload / 25 1.68
Credits ECTS 2
Scroll to Top