le Programme de licence en mathématiques

Français CEF B2.1 Académique(FLF101)

Nom du Cours Semestre du Cours Cours Théoriques Travaux Dirigés (TD) Travaux Pratiques (TP) Crédit du Cours ECTS
FLF101 Français CEF B2.1 Académique 1 2 0 0 2 2
Cours Pré-Requis
Conditions d'Admission au Cours
Langue du Cours
Type de Cours Obligatoire
Niveau du Cours Licence
Enseignant(s) du Cours Mickael LENGLET coordinateurfle.gsu@gmail.com (Email)
Assistant(e)s du Cours
Objectif du Cours - Poursuivre l'apprentissage linguistique du français et consolider le niveau atteint en fin de classe préparatoire
- Permettre aux étudiants de pouvoir suivre un cours disciplinaire en français
- Préparer les étudiants aux certifications Delf/Dalf
Contenus 4 heures de cours hebdomadaires + 3 discussions

Ce cours s'organise autour de 3 objectifs :

- S'informer et restituer des informations
- Comparer
- Analyser et synthétiser
Acquis d'Apprentissage du Cours En fin de cours, les étudiants devront être en mesure de :

- Comprendre une définition, un concept disciplinaire
- Faire une recherche documentaire sur un sujet disciplinaire
- Analyser des documents
- Faire un exposé oral
- Exprimer son opinion sur un sujet propre au champ disciplinaire ou sur un sujet d'actualité
Méthodes d'Enseignement - Activités permettant de travailler les 4 compétences (Ecouter / Parler / Lire / Ecrire)
- Projet du semestre : Découvrir le monde professionnel de la communication (İnterview d'un professionnel / réalisation d'une fiche métier / réalisation d'une vidéo de présentation du métier)
- 2 tâches : Présenter à l'oral une personne qui a influencé le domaine disciplinaire + Faire une revue de presse
Ressources Dossier de cours du semestre préparé par l'enseignant
Imprimer le contenu du cours
Intitulés des Sujets Théoriques
Semaine Intitulés des Sujets
1 Activité d’expression orale : se présenter, présenter son projet universitaire et professionnel
2 Etape 1 du projet : interview par 2 sur le monde de la communication
3 Analyse de texte
4 Analyse de texte
5 Exposés
6 Exposés
7 Activité d’expression écrite
8 Analyse de texte
9 Analyse de texte
10 Analyse de documents
11 Activité d’expression orale
12 Présentations orales
13 Présentations orales
14 Bilan du cours
Intitulés des Sujets Pratiques
Semaine Intitulés des Sujets
1 Activité d’expression orale : se présenter, présenter son projet universitaire et professionnel
2 Etape 1 du projet : interview par 2 sur le monde de la communication
3 Analyse de texte
4 Analyse de texte
5 Exposés
6 Exposés
7 Activité d’expression écrite
8 Analyse de texte
9 Analyse de texte
10 Analyse de documents
11 Activité d’expression orale
12 Présentations orales
13 Présentations orales
14 Bilan du cours
Contribution à la Note Finale
  Numéro Frais de Scolarité
Contribution du contrôle continu à la note finale 100 60
Contribution de l'examen final à la note finale 100 40
Toplam 200 100
Contrôle Continu
  Numéro Frais de Scolarité
Devoir 100 30
Présentation 100 10
Examen partiel (temps de préparation inclu) 0 0
Projet 100 60
Travail de laboratoire 0 0
Autres travaux pratiques 0 0
Quiz 0 0
Devoir/projet de session 0 0
Portefeuille 0 0
Rapport 0 0
Journal d'apprentissage 0 0
Mémoire/projet de fin d'études 0 0
Séminaire 0 0
Autre 0 0
Toplam 300 100
No Objectifs Pédagogiques du Programme Contribiton
1 2 3 4 5
1 comprend les principes de la méthode hypothético-déductive; s'est interrogé systématiquement sur la pertinence et la justesse des énoncés mathématique qu'il a rencontré ou produit;
2 sait énoncer et utiliser judicieusement les concepts et les résultats des mathématiques de base; X
3 maîtrise les techniques de calcul et les algorithmes courants; possède une bonne intelligence de calcul pour les mettre en œuvre; est capable d'identifier les outils pertinents, parmi ceux qu'il connaît, pour la résolution d'un problème​, et ​est capable de juger s’il ne possède pas ces outils; X
4 est capable d'exprimer de manière organisée, tant à l'écrit qu'à l'oral, ses idées​ ​mathématiques; X
5 a réalisé les relations essentielles qui lient entre eux ces concepts et résultats; est capable de passer de l'un à l'autre de divers mode de représentation des objets mathématiques (dessins, formules, énoncés précis, heuristiques, collection d'exemples,...); X
6 a poursuivi, en autonomie, une stratégie d'apprentissage guidée; s'est engagé dans des stratégies de résolution d'un problème complexe; X
7 a les bases théoriques et pratiques suffisantes en informatique pour pouvoir poursuivre l'apprentissage d'un langage de programmation; X
8 s'est interrogé sur la pertinence de la modélisation mathématique et l'usage des outils mathématiques dans les sciences naturelles et dans le monde professionnel; a été sensibilisé à l'évolution historique des concepts mathématiques; X
9 a eu l'opportunité de choisir librement certains de ses cours (de mathématiques ou d'autres disciplines) et a, à l'occasion, appris à prendre ses responsabilités et à organiser son projet éducatif par lui-même; X
10 a une maîtrise de la langue française et d'une autre langue étrangère suffisante pour pouvoir poursuivre des études ou travailler à l'étranger. X
Activités Nombre Durée Charge totale de Travail
Durée du cours 28 2 56
Présentation 2 1 2
Projet 1 10 10
Examen final (temps de préparation inclu) 1 5 5
Charge totale de Travail 73
Charge totale de Travail / 25 2,92
Crédits ECTS 3
Scroll to Top