le Programme de licence en mathématiques

Analyse à une variable I(MAT101)

Nom du Cours Semestre du Cours Cours Théoriques Travaux Dirigés (TD) Travaux Pratiques (TP) Crédit du Cours ECTS
MAT101 Analyse à une variable I 1 3 2 0 5 8
Cours Pré-Requis
Conditions d'Admission au Cours
Langue du Cours
Type de Cours Obligatoire
Niveau du Cours Licence
Enseignant(s) du Cours Begüm Gülşah ÇAKTI (Email) Sylvain LAVAU sylvain.lavau@gmail.com (Email)
Assistant(e)s du Cours
Objectif du Cours Établir les fondements de l'analyse à une variable réelle
Contenus Propriétés de R
Topologie de R
Suites
Limites
Continuité
Fonctions usuelles
Acquis d'Apprentissage du Cours Pouvoir argumenter et démontrer de manière rigoureuse et autonome
Maitriser les outils et concepts mathématiques adéquats pour la résolution de problèmes abstraits
Méthodes d'Enseignement Cours théoriques et séries d'exercices
Ressources - Analyse 1re année : Cours et exercices avec solution Liret, François, Dominique Martinais

- Maths en pratique - 1re édition - A l'usage des étudiants Liret, Françoise

- First Course in Real Analysis, Sterling K.Berberian, Springer

- Mathématiques : tout-en-un : 1re année : cours et exercices corrigés : MPSI-PCSI Mathématiques : tout-en-un : 1re année : cours et exercices corrigés : MPSI-PCSI
Imprimer le contenu du cours
Intitulés des Sujets Théoriques
Semaine Intitulés des Sujets
1 Langage, ensemble et applications
2 Propriétés des réels
3 Propriétés des réels
4 Partiel 1
5 Suites
6 Suites
7 Limite et continuite
8 Limite et continuite
9 Limit et Continuite
10 Partiel 2
11 Derivabilite
12 Derivabilite
13 Courbes Parametrees
14 Courbes Parametrees
Intitulés des Sujets Pratiques
Semaine Intitulés des Sujets
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Contribution à la Note Finale
  Numéro Frais de Scolarité
Contribution du contrôle continu à la note finale 3 60
Contribution de l'examen final à la note finale 1 40
Toplam 4 100
Contrôle Continu
  Numéro Frais de Scolarité
Devoir 0 0
Présentation 0 0
Examen partiel (temps de préparation inclu) 2 45
Projet 0 0
Travail de laboratoire 0 0
Autres travaux pratiques 0 0
Quiz 0 0
Devoir/projet de session 0 0
Portefeuille 0 0
Rapport 0 0
Journal d'apprentissage 1 15
Mémoire/projet de fin d'études 0 0
Séminaire 0 0
Autre 0 0
Toplam 3 60
No Objectifs Pédagogiques du Programme Contribiton
1 2 3 4 5
1 comprend les principes de la méthode hypothético-déductive; s'est interrogé systématiquement sur la pertinence et la justesse des énoncés mathématique qu'il a rencontré ou produit; X
2 sait énoncer et utiliser judicieusement les concepts et les résultats des mathématiques de base; X
3 maîtrise les techniques de calcul et les algorithmes courants; possède une bonne intelligence de calcul pour les mettre en œuvre; est capable d'identifier les outils pertinents, parmi ceux qu'il connaît, pour la résolution d'un problème​, et ​est capable de juger s’il ne possède pas ces outils; X
4 est capable d'exprimer de manière organisée, tant à l'écrit qu'à l'oral, ses idées​ ​mathématiques; X
5 a réalisé les relations essentielles qui lient entre eux ces concepts et résultats; est capable de passer de l'un à l'autre de divers mode de représentation des objets mathématiques (dessins, formules, énoncés précis, heuristiques, collection d'exemples,...); X
6 a poursuivi, en autonomie, une stratégie d'apprentissage guidée; s'est engagé dans des stratégies de résolution d'un problème complexe; X
7 a les bases théoriques et pratiques suffisantes en informatique pour pouvoir poursuivre l'apprentissage d'un langage de programmation; X
8 s'est interrogé sur la pertinence de la modélisation mathématique et l'usage des outils mathématiques dans les sciences naturelles et dans le monde professionnel; a été sensibilisé à l'évolution historique des concepts mathématiques; X
9 a eu l'opportunité de choisir librement certains de ses cours (de mathématiques ou d'autres disciplines) et a, à l'occasion, appris à prendre ses responsabilités et à organiser son projet éducatif par lui-même; X
10 a une maîtrise de la langue française et d'une autre langue étrangère suffisante pour pouvoir poursuivre des études ou travailler à l'étranger. X
Activités Nombre Durée Charge totale de Travail
Durée du cours 14 5 70
Préparation pour le cours 14 3 42
Devoir 2 3 6
Présentation 4 6 24
Examen partiel (temps de préparation inclu) 2 12 24
Examen final (temps de préparation inclu) 1 15 15
Devoir/projet de session 1 3 3
Charge totale de Travail 184
Charge totale de Travail / 25 7.36
Crédits ECTS 7
Scroll to Top