Contenus

Nom du Cours		Semestre du Cours	Cours Théoriques	Travaux Dirigés (TD)	Travaux Pratiques (TP)	Crédit du Cours	ECTS	
MAT414	Topologie Géométrique de Base	7	3	0	0	3	5	

Cours Pré-Requis	
Conditions d'Admission	
au Cours	

Langue du Cours	Français
Type de Cours	Électif
Niveau du Cours	Licence
Objectif du Cours	-Présenter les notions fondamentales de topologie géométrique (classification des surfaces, groupe fondamental, espaces revêtus); développer le raisonnement fondé sur la preuve ; et, en fin de semestre, introduire l'homologie (H_0, H_1) afin d'interpréter la relation entre la caractéristique d'Euler et les nombres de Betti.
Contenus	-Rappels topologiques ; modèles de surfaces (construction à partir de polygones, recollements de bords)
	Triangulations, complexes ; caractéristique d'Euler et invariance
	Surfaces orientables / non orientables ; espace projectif, bouteille de Klein, ruban de Möbius ; critères d'orientabilité
	Homotopie, rétractions ; définition du groupe fondamental et premiers exemples (S^1, bouquets de cercles)
	Théorème de Seifert-van Kampen et applications
	Présentations de groupe fondamental pour les surfaces et conséquences
	Espaces revêtus : définitions, relèvement des chemins/homotopies, groupe de deck
	Exemples classiques de revêtements de surfaces
	Décompositions cellulaires et passage à la caractéristique d'Euler
	Introduction à l'homologie : chaînes, intuition bord/cycle ; calculs de H_0, H_1 (graphes, S^1, bouquets, tore)
	H_1 des surfaces ; relation de caractéristique d'Euler
Ressources	A. Hatcher, Algebraic Topology J. Stillwell, Classical Topology and Combinatorial Group Theory M. A. Armstrong, Basic Topology J. R. Munkres, Elements of Algebraic Topology

Intitulés des Sujets Théoriques

Semaine	Intitulés des Sujets	
1	Rappels des notions topologiques	

Semaine	Intitulés des Sujets	
2	Triangulations, complexes simpliciaux, caractéristique d'Euler et invariance	
3	Homotopies et rétractions : notions et exemples	
4	Groupe fondamental : S ¹ , bouquets ; premiers calculs	
5 Théorème de Seifert-van Kampen et applications		
6	Espaces revêtus : définitions, relèvements de chemins/homotopies ; groupe de deck	
7	Exemples de revêtements, revêtements des surfaces ; revêtement universel	
8	Partiel	
9	Revêtements des surfaces	
10 Classification des surfaces : polygones fondamentaux, orientabilité (RP², bouteille de Klein, ruban de Möbius)		
11	Décompositions cellulaires et calcul de caractéristique d'Euler; exemples	
12	Introduction à l'homologie : complexes de chaînes, intuition bords/cycles	
13	calculs de premier group d'homologue ; surfaces	
14	Synthèse et intégration (groupe fondamental, revêtements, homologie) ; entraînement à l'examen	