Contenus

Nom du Cours		Semestre du Cours	Cours Théoriques	Travaux Dirigés (TD)	Travaux Pratiques (TP)	Crédit du Cours	ECTS
MAT452	Introduction à l'analyse fonctionelle	7	4	0	0	4	8

Cours Pré-Requis	MAT201, MAT261, MAT262
Conditions d'Admission au Cours	MAT201, MAT261, MAT262

Langue du Cours	Français
Type de Cours	Obligatoire
Niveau du Cours	Licence
Objectif du Cours	L'objectif de ce cours est d'étudier les notions de base de l'analyse fonctionnelle avec quelques applications.
Contenus	Espaces de Banach, Espaces de Hilbert, Théorème de Hahn Banach l'intégrabilité, la complétude des espaces Lp Applications de l'analyse fonctionnel.
Ressources	Introductory Functional Analysis and Applications, Erwin Kreyszig

Intitulés des Sujets Théoriques

Semaine	Intitulés des Sujets	
1	Espaces Metriques: Espaces complets, compacité	
2	Définitions et exemples d'espaces de Banach. Espaces de fonctions continues et intégrables	
3	Espaces de Banach, compacité et dimension finie, le théorème d'Ascoli	
4	Dualité dans les espaces de Banach	
5	Définitions et exemples d'espaces de Hilbert.	
6	Orthogonalité et projection. Théorème de Riesz-Fischer	
7	Partiel	
8	Théorème fondamental de l'analyse fonctionnel: Lemme de Zorn, Théorème de Hahn Banach	
9	Théorème fondamental de l'analyse fonctionnel: Lemme de Zorn, Théorème de Hahn Banach	
10	Devoir	
11	Espaces Lp, la théorie de la mesure et définition des espaces Lp	
12	Les espaces Lp comme espaces de Banach, Densité dans les espaces Lp	
13	Applications de l'analyse fonctionnelle: Transformation de Fourier et applications	
14	Applications de l'analyse fonctionnelle: Espaces de Sobolev et leurs propriétés	