Content

Course Code	Course Name	Semester	Theory	Practice	Lab	Credit	ECTS
MAT331	Probability	5	4	0	0	4	8

Prerequisites	
Admission Requirements	

Language of Instruction	French
Course Type	Compulsory
Course Level	Bachelor Degree
Objective	The aim of this course is to learn the definitions, examples and the properties of discrete and continuous random variables and to be able to use them in probability calculations.
Content	Combinatorial analysis, Axioms of probability, Conditional probability and independence, Random variables, Continuous random variables, Jointly distributed random variables, Properties of expectation, Limit theorems.
References	Initiation aux Probabilités, Sheldon Ross

Theory Topics

Week	Weekly Contents		
1	Permutations and combinations, Sample space and events, Axioms of Probability		
2	Conditional probability, Bayes' Formula, Random variables, Discrete random variables		
3	Expected Value, Expectation of a Function of a random variable, Variance		
4	The Bernoulli and binomial random variables, The Poisson random variable, Other discrete probability distributions		
5	Continuous random variables and their expectation and variance		
6	The uniform random variable, Normal random variables, Exponential random variables		
7	The distribution of a Function of a random variable, Midterm Examination		
8	Joint distribution functions, Independent random variables, Sums of independent random variables		
9	Conditional Distributions, Joint probability distribution of functions of random variables		
10	Properties of expectation, Expectation of sums of random variables, Moments of the number of events that occur		
11	Covariance, Variance of sums and Correlations		
12	Conditional expectation and prediction, Moment generating Functions		
13	Chebyshev's inequality, The weak law of large numbers,		
14	The central limit theorem, The strong law of large numbers		