Content | Course Code | Course Name | Semester | Theory | Practice | Lab | Credit | ECTS | |-------------|-------------------------|----------|--------|----------|-----|--------|------| | MAT232 | Algorithms and Advanced | 4 | 3 | 3 | 0 | 3 | 3 | | | Programming II | | | | | | | | Prerequisites | | |------------------------|--| | Admission Requirements | | | Language of Instruction | | |-------------------------|---| | Course Type | Compulsory | | Course Level | Bachelor Degree | | Objective | The purpose of this course is to improve students understanding of algorithm design and analysis by studying algorithms working on more complex data structures. | | Content | Introduction to object-oriented programming - Basic Concepts Trees and tree hopping AVL Trees Splay Trees Max and Min Stack Trees MultiWays Tree Graphs and Entanglement Algorithms Minimum Spanning Tree Graph algorithms (shortest path, all pairs shortest path, Djikstra's algorithm) Coloring of graphs, matrix representation, conversion between representations in the form of matrices and objects Character Sequence Algorithms (search in character sequence, longest common substring) Reference behavior, value behavior, shallow/deep copy | | References | The Art of Computer Programming, Addison-Wesley, Donald Knuth Algorithms, 4th Ed. Robert Sedgewick Lafore, R., Broder, A., & Canning, J. (2022). Data Structures and Algorithms in Python. Pearson Education, Limited. Agarwal, B., & Baka, B. (2018). Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using the latest features of Python 3.7. Packt Publishing Ltd. www.geeksforgeeks.org | ## **Theory Topics** | Week | Zeekly Contents | |------|-----------------| |------|-----------------|