Content

Course Code	Course Name	Semester	Theory	Practice	Lab	Credit	ECTS
MAT204	Abstract Algebra	3	3	2	0	5	8

Prerequisites	
Admission Requirements	

Language of Instruction	
Language of mistraction	
Course Type	Compulsory
Course Level	Bachelor Degree
Objective	To introduce some basic algebraic structures (groups and rings) and how to study them
Content	Groups as symmetry measuring constructs, subgroups, normal subgroups, quotient groups, group homomorphisms, isomorphism theorems, group actions
	Rings, subrings and ideals, isomorphism theorems, irreducible and prime elements
References	Mathématique L3 Algèbre, Aviva Szpirglas
	Abstract Algebra: Theory and Applications, Thomas W. Judson, Robert A. Beezer
	http://abstract.ups.edu/aata/aata.html
	An Inquiry Based Approach to Abstract Algebra, Dana C. Ernst
	https://danaernst.com/teaching/mat411f20/IBL-AbstractAlgebra.pdf
	Cebir I - Temel Grup Teorisi, Ali Nesin
	https://nesinkoyleri.org/wp-content/uploads/2019/05/cebir.pdf

Theory Topics

Week	Weekly Contents		
1	Notion of symmetry		
2	Axiomatic definition of a group, group examples, operation tables, subgroup		
3	Group homomorphisms, operations on groups		
4	Kernel et image of homomorphisms, quotient of a group by a subgroup, Lagrange's theorem		
5	Normal subgroups, quotient groups, Isomorphism theorems		
6	Semi-direct products		
7	Group actions on sets		
8	Midterm		
9	Orbit-stabiliser theorem, Sylow Theorems		
10	Sylow Theorems and applications		
11	Rings, ring homomorphisms, kernel and image of homomorphisms, subrings and ideals		
12	Quotient rings, isomorphism theorem		
13	Prime and irreducible elements		
14	Unique Factorization Domains		