Content | Course Code | Course Name | Semester | Theory | Practice | Lab | Credit | ECTS | |-------------|---|----------|--------|----------|-----|--------|------| | INF354 | Introduction to Game Theory and Applications in Informatics | 5 | 3 | 0 | 0 | 3 | 4 | | Prerequisites | | |------------------------|--| | Admission Requirements | | | Language of Instruction | French | |-------------------------|--| | Course Type | Elective | | Course Level | Bachelor Degree | | Objective | To find win strategies for game trees Learning zero-sum games Be able to model and solve some real life problems within the framework of game theory Be able to examine non-zero-sum games at basic level | | Content | Week 1: Modeling some problems using game trees Week 2: Determination of winning strategies for game trees Week 3: Zero-sum games for 2 players, strategy, gain matrix and modeling Week 4: Minimax principle and instability in minimax strategies Week 5: Features of max and min operators, modeling and solving of different game examples Week 6: Minimax theorem, solution of 2x2 games Week 7: Geometric solution of 2x2 games Week 8: Midterm exam Week 9: Calculation of game value in 2x2 games Week 10: Examination of 2xm games, solution of nxm games Week 11: Linear programming Week 12: Iteration method for the solution of nxm games Week 13: Introduction to non-zero sum games Week 14: Nash equilibrium | | References | Oyun Teorisi, Prof. Dr. Hüsamettin Bakoğlu, Ege Üniversitesi Basımevi, 1991. Oyun Teorisine Giriş, Doç. Dr. Ayhan Toraman, İ.T.Ü. Rektörlüğü Offset Atölyesi, 1982. Oyun Teorisi ve J. Nash Dengesi, Ali Koyuncu, 2009. | ## **Theory Topics** | Week | Weekly Contents | |------|--| | 1 | Modeling some problems using game trees | | 2 | Determination of winning strategies for game trees | | 3 | Zero-sum games for 2 players, strategy, gain matrix and modeling | | 4 | Minimax principle and instability in minimax strategies | | 5 | Features of max and min operators, modeling and solving of different game examples | | 6 | Minimax theorem, solution of 2x2 games | | 7 | Geometric solution of 2x2 games | | 8 | Midterm exam | | 9 | Calculation of game value in 2x2 games | | 10 | Examination of 2xm games, solution of nxm games | | Week | Weekly Contents | |------|--| | 11 | Linear programming | | 12 | Iteration method for the solution of nxm games | | 13 | Introduction to non-zero sum games | | 14 | Nash equilibrium |